Nitrogen-15 Nuclear Magnetic Resonance Shifts in Me₃¹⁵N--Solvent Systems^{1a}

Mohammed Alei, Jr.,^{1b} Alan E. Florin,^{1b} and William M. Litchman^{1c}

Contribution from the University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544, and the Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87106. Received February 12, 1970

Abstract: A model previously used to interpret ^{15}N nmr shifts for the $^{15}NH_3$ molecule in a series of liquid solvents has been applied to the ¹⁵N shifts for Me₃¹⁵N in the same solvents. The results are in accord with the predictions of the model and serve to confirm the conclusion that the ¹⁵N shifts are principally determined by intermolecular interactions involving the nitrogen lone-pair electrons. It also seems increasingly clear that intermolecular interactions other than formation of the generally accepted types of hydrogen bonds can make significant contributions to the ¹⁵N shift in amines.

We recently demonstrated² that the ¹⁵N nmr shift relative to gaseous ¹⁵NH₃, for the ¹⁵NH₃ molecule at "infinite dilution" in a number of liquid solvents at room temperature, is adequately explained in terms of an empirical model which assumes that the observed shift is a simple sum of contributions due to two general types of interactions: (1) the interaction of the $^{15}NH_3$ nitrogen lone-pair electrons with solvent molecule protons or hydrocarbon groups and (2) the interaction of solvent molecule unshared electron pairs with the ¹⁵NH₃ protons. Based on this model and a number of assumptions, we concluded that interactions of the first type made much larger contributions to the ¹⁵NH₃ shifts than did interactions of the second type.

In an effort to test the general validity of the model and assumptions used in the above-mentioned work, we have undertaken a study of the ¹⁵N nmr shifts for the Me₃¹⁵N molecule at infinite dilution in the same solvents used in the ¹⁵NH₃ work. Since the Me₃¹⁵N molecule has no protons directly bonded to the ¹⁵N nucleus, we would expect interactions of the second type to make negligible contributions to the ¹⁵N shift in Me₃¹⁵N. The ¹⁵N shifts in Me₃¹⁵N would therefore be expected to be determined almost entirely by the interactions of the nitrogen lone-pair electrons.

In a recently reported study³ of ¹⁷O shifts for H₂¹⁷O in the solvents acetone, ammonia, and trimethylamine, we concluded that the dominant contribution to the observed shifts resulted from interaction of water oxygen lone-pair electrons with the solvent molecule. As mentioned earlier, the subsequent study of ¹⁵NH₃ in a number of solvents led to a similar conclusion for the ¹⁵N shifts. This suggests the generality that when, in molecules like NH3 or H2O, atoms such as N or O serve as both electron-pair donors (proton acceptors) and proton donors in hydrogen-bonded systems, the electron-pair donation makes the dominant contribution to the nmr shift of the atom relative to its resonance in the isolated molecule. However, Reuben⁴ has recently inferred, from ¹⁷O nmr shifts for H₂¹⁷O in a number of solvents, that proton donation contributes roughly twice as much as to the shift as does electronpair donation. This is in direct contradiction to our conclusion. The disagreement arises principally from use of differing sets of initial assumptions and demonstrates the need for a wide experimental base and more critical evaluation of models and assumptions used in correlating nmr shifts with intermolecular interactions.

Two preparations of Me₃¹⁵N were used in this work, one enriched to 50% and the other to 100% in ${}^{15}N$. The ¹⁵NH₄Cl used in preparation of the Me₃¹⁵N was derived from isotopically enriched ¹⁵NO as described previously.2

Me₃¹⁵N-solvent mixtures were prepared by distilling or pipetting measured amounts of materials directly into standard 5-mm o.d., 0.4-mm wall Pyrex nmr sample tubes. A small amount of TMS was condensed into each sample to help determine bulk susceptibility corrections. The contents of the sample tube were held at liquid N_2 temperature while the tube was sealed off under vacuum.

The ¹⁵N resonances were recorded by holding the magnetic field constant and sweeping the frequency as described previously.² ¹⁵N shifts were measured at $29.6 \pm 0.5^{\circ}$ and are reported relative to gaseous Me₃¹⁵N, whose ¹⁵N resonance was observed in a sample of Me₃¹⁵N vapor in equilibrium with Me₃¹⁵N liquid at 29.6 or 73°. (The vapor resonance is 4.22 ppm upfield of the liquid resonance at 29.6° and the absolute position of the vapor resonance at 73° is the same as it is at 29.6°.) Susceptibility corrections were made by measuring the volume susceptibilities of all samples and applying the correction for cylindrical geometry.⁵ The overall uncertainty in the shift measurements is less than ± 0.2 ppm.

The relatively long relaxation time for ¹⁵N in the Me₃¹⁵N molecule in liquid Me₃N and in most of the solvents used requires that care be taken not to saturate the resonance. The observed ¹⁵N resonances were relatively broad but well-defined singlets (2-3 Hz wide at half-height). The broadness is probably due to unresolved splitting by the methyl protons.

(5) J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High Resolu-tion Nuclear Magnetic Resonance," McGraw-Hill, 1959, p 81.

^{(1) (}a) Work supported by the U. S. Atomic Energy Commission; (b) Los Alamos Scientific Laboratory; (c) University of New Mexico; Associated Western Universities Research Participant at Los Alamos Scientific Laboratory.

⁽²⁾ W. M. Litchman, M. Alei, Jr., and A. E. Florin, J. Amer. Chem. (2) W. M. Zalender, Soc., 91, 6574 (1969).
(3) M. Alei, Jr., and A. E. Florin, J. Phys. Chem., 73, 863 (1969).
(4) J. Reuben, J. Amer. Chem. Soc., 91, 5725 (1969).

Table I. ¹⁵N Solvent Shifts in Ppm Relative to Me₃¹⁵N(g)

			- ··· · · · ·	-Mol % Me ₃ 15N			
Solvent	50	30	10	5	1	0.1	0ª
NH ₃	-4.85	-4.92	-5.21	- 5.26	-5.48		-5.4
$MeNH_2$	-4.59	-4.81	-4.92	-5.05			-5.1
Me ₂ NH	-4.59	-4.73	-4. 96	-4.88			-5.0
H_2O	-7.71	-9.10	-10.52	-10.67	-11.01	-11.09	-11.1
MeOH	-6.61	-7.74	-8.85	-8.80			-9.2
Me ₂ O	-4.16	-4.03	-4.01	-4.00			-4.0
Me ₃ N							-4.2
Me ₄ C	-4.25	-4.12	-4.19	-4.22			-4.2
EtOH	-6.61	-7.50	-8.43	-8.67			-8.9
Et_2O	-4.44	-4.50	-4.58	-4.51	-4.46		-4.6
EtNH ₂	-4.81	-4.81	-4.95	-4.97			-5.1
Et ₂ NH	-4.72	-4.90	-4.77	-4.83			-5.0
Et ₃ N	-4.39	-4.47	-4.58	-4.55			-4.6
Et₄C	-4.41	-4.44	-4.43				-4.5
CCl ₄	-5.94	-6.49	-6.85				-7.3

^a The extrapolated value.

Results and Discussion

Table I lists the observed ¹⁵N shifts for $Me_3^{15}N$ as a function of mol % Me₃N in a number of solvents. These data are plotted in Figure 1. Since the plots are linear within experimental uncertainty, we assume that they may be extrapolated to zero $Me_3^{15}N$ concentration to yield an "infinite dilution shift" for $Me_3^{15}N$ in each of the solvents used. These infinite dilution shifts are listed under 0 mol % $Me_3^{15}N$ in Table I.

Using the same model and assumptions previously employed in the ¹⁵NH₃ study,² we assume the ¹⁵N shift of the Me₃¹⁵N molecule at infinite dilution in a particular solvent is given by a summation of shift contributions of two general types: (1) contributions due to interaction of the Me315N nitrogen lone-pair electrons with solvent protons or hydrocarbon groups (σ_{A} , terms) and (2) contributions due to interaction of solvent molecule unshared electron pairs with the Me₃¹⁵N methyl groups (σ_{B_v} terms). Assuming each contribution depends only upon the kind of solvent molecule atom or group involved and is independent of the overall composition of the solvent molecule, the observed infinite dilution shifts in all solvents except CCl₄ should be given by an appropriate summation of only six different "shift parameters" defined as follows: (1) shift contribution due to interaction of the Me₃¹⁵N nitrogen lone-pair electrons with a

solvent molecule OH proton =
$$\sigma_{A_{OH}}$$

solvent molecule NH proton = $\sigma_{A_{NH}}$
solvent molecule methyl group = $\sigma_{A_{Me}}$
solvent molecule ethyl group = $\sigma_{A_{Fe}}$

and (2) shift contribution due to interaction of the Me₃¹⁵N methyl groups with

solvent oxygen lone-pair electrons =
$$\sigma_{B_0}$$

solvent nitrogen lone-pair electrons = σ_{B_N}

The observed infinite dilution shift in a given solvent should then be given by a summation of the sort

$$\delta_{\text{solvent}} = \sum_{x} C_{x} \sigma_{A_{x}} + \sum_{y} C_{y} \sigma_{B_{y}}$$

where x runs over the four subscripts OH, NH, Me, and Et, y is either O or N, and C_y is either 0 or 1. To evaluate the coefficients C_x , we assume that in a solvent which has more than one site capable of interacting

Figure 1. ¹⁵N nmr shifts for Me₃¹⁵N in a number of liquid solvents.

with a Me₈¹⁵N nitrogen lone pair, the probability of interaction with a given solvent site will be simply directly proportional to its relative abundance in the solvent molecule. Thus, for example, the infinite dilution shift for Me₃¹⁵N in EtNH₂ as solvent is given as

$$\delta_{\text{EtNH}_2} = \frac{2}{3}\sigma_{\text{A}_{\text{NH}}} + \frac{1}{3}\sigma_{\text{A}_{\text{Et}}} + \sigma_{\text{B}_{\text{N}}}$$

Proceeding in this fashion and excluding for the moment the solvents CCl_4 and Et_4C , we may write 13 such equa-

4829

Table II. Scheme of Coefficients

		C	x		C	'y
Solvent	$\sigma_{A_{Me}}$	$\sigma_{\mathrm{A_{Et}}}$	$\sigma_{A_{\rm NH}}$	$\sigma_{A_{OH}}$	σ_{B_N}	σ _{Bo}
H ₂ O				1		1
Me ₂ O	1					1
Me₃N	1				1	
Me₄C	1					
MeNH ₂	1/3		2/3		1	
MeOH	1/2			1/2		1
EtOH		1/2		1/2		1
Me ₂ NH	2/3		1/3	,	1	
EtNH ₂		1/3	2/3		1	
Et ₂ O		1				1
Et₃N		1			1	
Et₂NH		2/3	1/3		1	
NH ₃			1		1	

tions with the coefficients for each solvent listed in Table II. We then used a least-squares computer program to determine the six shift-parameter values which give the best fit between the experimentally observed infinite dilution shifts and those calculated from the equations indicated above. Although such a procedure produced shift-parameter values which gave a very good fit between calculated and experimental infinite dilution shifts (sum of squares of deviations = 2.4), the derived values for σ_{B_0} and σ_{B_N} were comparable in magnitude with the experimental uncertainty in the shift measurements (± 0.2 ppm). We therefore neglected the σ_{B_N} parameters and attempted a least-squares fit using only the four σ_{A_x} parameters. The results are shown in Table III. The sum of the squares of the deviations

Table III. Values of Parameters and Calculated Results

Best parameter		-Infinite dilut	ion shifts-	
values	Solvent	Exptl	Calcd	Diff
$\sigma_{A_{OH}} = -11.9$	H ₂ O	— 11 .1	-11. 9	-0.8
$\sigma_{\rm A_{\rm NH}} = -5.4$	Me ₂ O	-4.0	-4.4	-0.4
	Me₃N	-4.2	-4.4	-0.2
$\sigma_{\rm A_{\rm Et}} = -4.7$	Me₄C	-4.2	-4.4	-0.2
	MeNH ₂	-5.1	-5.1	0
$\sigma_{A_{M_0}} = -4.4$	MeOH	-9.2	-8.1	+1.1
1110	EtOH	<u>-8.9</u>	-8.3	+0.6
	Me ₂ NH	-5.0	-4.7	+0.3
	EtNH ₂	- 5.1	-5.2	-0.1
	Et_2O	-4.6	-4.7	-0.1
	Et₃N	-4.6	-4.7	-0.1
	Et ₂ NH	-5.0	-5.0	0
	NH3	-5.4	- 5.4	0

between calculated and experimental shifts in Table III is 2.4 indicating that the fit here is just as good as that obtained by including the σ_{B_y} parameters. We therefore conclude that within the experimental uncertainties of this work, the σ_{B_y} shift contributions are completely negligible.

With regard to the best parameter values in Table III we note that the value of $\sigma_{A_{Et}}$ derived from the solvents listed is in very good agreement with the experimentally determined value of the infinite dilution shift for Me₃¹⁵N in tetraethylmethane (*cf.* Table I). This is consistent with the proposed model which assumes $\sigma_{A_{Et}}$ to be the only shift contribution for Me₃¹⁵N at infinite dilution in Et₄C.

It is interesting to compare the best shift parameters for the $Me_3^{15}N$ -solvent systems with those previously obtained for $^{15}NH_3$ in the same solvents. These are compared in Table IV. Apart from the anticipated

Table IV. Best Shift-Parameter Values

	Me ₃ ¹⁵ N	¹⁵ NH ₃ ^a
σΑΟΗ	-11.9	-25.2
$\sigma_{A_{NH}}$	-5.4	-19.1
$\sigma_{A_{E}}$	-4.7	-16.5
$\sigma_{A_{M_{n}}}$	-4.4	-13.2
σΒο	0	+3.3
σ_{B_N}	0	+2.1

^a The σ_A values in this list are all 2.1 ppm larger in magnitude than those listed in ref 2. In that work, the value for the ¹⁵N shift between ¹⁵NH₃ vapor and ¹⁵NH₃ liquid was erroneously taken as -15.9 ppm owing to incorrect application of a volume susceptibility correction. The correct value is -18.0 ± 0.2 ppm. As a result of this error, the infinite dilution shifts and σ_A parameters for ¹⁵NH₃ given in ref 2 are all too small in absolute magnitude by 2.1 ppm. The σ_B parameters are unaffected. This change does not alter the principal conclusions of that work.

result that the σ_{B_y} shift contributions are relatively much more important for ¹⁵NH₃ than for Me₃¹⁵N, Table IV also demonstrates that the σ_{A_x} parameters for Me₃¹⁵N, though smaller in absolute magnitude, are in the same direction relative to the gas-phase resonance (paramagnetic) and show the same trend in relative magnitudes (*i.e.*, $\sigma_{A_{OII}} > \sigma_{A_{NH}} > \sigma_{A_{Et}} > \sigma_{A_{Me}}$) as the corresponding parameters for ¹⁵NH₃. This suggests that, at least for simple amines, interactions of the nitrogen lone-pair electrons will, in general, lead to a downfield shift of the ¹⁵N resonance relative to the gaseous molecule. Moreover, for both Me₃¹⁵N and ¹⁵NH₃, shift contributions due to interactions not generally considered to be hydrogen bonding ($\sigma_{A_{Et}}$ and $\sigma_{A_{Me}}$), although somewhat smaller than the hydrogen-bonding contributions ($\sigma_{A_{OH}}$ and $\sigma_{A_{NH}}$), are by no means negligible in comparison. In the $H_2^{17}O$ study of Reuben,⁴ referred to in the introduction, oxygen lonepair interactions other than hydrogen-bond formation are tacitly assumed to contribute nothing to the ¹⁷O shift. In the light of our ¹⁵N results in amine systems, we feel that such an assumption may lead to serious errors in interpretation.

With regard to the ¹⁵N infinite dilution shift for Me₃¹⁵N in CCl₄, the comparatively large paramagnetic nature of the shift suggests a strong interaction between the nitrogen lone-pair electrons of Me₃¹⁵N and the CCl₄ molecule. In the ¹⁵NH₃ work previously referred to we also observed a large downfield shift of the ¹⁵N resonance for ¹⁵NH₃ at infinite dilution in CCl₄. The exact nature of the interaction between these amines and CCl₄ is not known. However, Stevenson and Coppinger,⁶ on the basis of ultraviolet absorption measurements, conclude that triethylamine and CCl₄ form a 1:1 complex and that, in general, "the halomethanes constitute a hitherto unrecognized class of "acceptors" (albeit weak) for strong donors of the amine type." This suggestion that donation of the amine nitrogen lone pair is involved in formation of the complex would be completely consistent, from our point of view, with the strong downfield shift of ¹⁵N resonance.

Acknowledgment. The authors are indebted to Dr. B. B. McInteer and Mr. R. M. Potter of this laboratory for providing us with the ¹⁵N-enriched NO from which the Me₃¹⁵N was derived.

(6) D. P. Stevenson and G. M. Coppinger, J. Amer. Chem. Soc., 84, 149 (1962).